

# INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

## AERONAUTICAL ENGINEERING

## ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

| Name of the faculty: | Dr. Y B Sudhir Sastry            | Department:   | Aeronautical<br>Engineering |  |
|----------------------|----------------------------------|---------------|-----------------------------|--|
| Regulation:          | IARE - R16                       | Batch:        | 2016 - 2020                 |  |
| Course Name:         | Aerospace Structural<br>Dynamics | Course Code:  | AAE015                      |  |
| Semester:            | VII                              | Target Value: | 'alue: 65% (1.8)            |  |

## **Attainment of COs:**

| Course Outcome |                                                                                                                                                                             | Direct attainment | Indirect<br>attainment | Overall attainment | Observation                                |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------|--------------------|--------------------------------------------|
| CO1            | Explain the concepts of the equation of motion of free vibration and its response for determining the nature of single degree of freedom.                                   | 1.60              | 2.60                   | 1.8                | Attainment target reached                  |
| CO2            | Apply the various equations of free and forced vibration for determining the frequency of the spring-mass system.                                                           | 0.90              | 2.60                   | 1.2                | Attainment target is not yet reached       |
| CO3            | Understand the torsional vibrations of rotor and geared systems for determining the DOF of the vibrating systems.                                                           | 0.90              | 2.60                   | 1.2                | Attainment target is not yet reached       |
| CO4            | Develop the formulation of stiffness and flexibility influence coefficients for simplifying solution of multi DOF systems.                                                  | 0.90              | 2.60                   | 1.2                | Attainment target is not yet reached       |
| CO5            | Apply the transverse, longitudinal, torsional and lateral vibrations of cables, rods and beams for the design of continue elastic body.                                     | 0.90              | 2.50                   | 1.2                | Attainment<br>target is not yet<br>reached |
| CO6            | Analyze the static and dynamic aero elasticity of the typical airfoil and wing sections of aircraft using Eigen functions and Laplace equation for design of aircraft wing. | 0.90              | 2.60                   | 1.2                | Attainment<br>target is not<br>reached     |

#### Action taken report:

CO 2: Remedial classes have been conducted.

CO 3: Remedial classes have been conducted.

CO 4: Digital content and videos given in classes for better understanding of concept.

CO 5: Application oriented problems may be given.

CO 6: Real time application may be better for attainment.

Course Coordinator

Memor

Head of the Department
Aeronautical Engine HOT
INSTITUTE OF AERONAUTICAL ENGINEERING

Dundigal, Hyderabad - 500 043